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Abstract

Within the general framework of stochastic volatility, the authors
propose a method, which is consistent with no-arbitrage, to price
complicated path-dependent derivatives using only the information
contained in the implied volatility skew. This method exploits the
time scale content of volatility to bridge the gap between skews and
derivatives prices. Here they present their pricing formulas in terms
of Greeks free from the details of the underlying models and mathe-
matical techniques.

1 Underlying or Smile?

Our goal is to address the following fundamental question in pricing and
hedging derivatives. How traded call options, quoted in terms of implied
volatilities, can be used to price and hedge more complicated contracts. One
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can approach this difficult problem in two different ways: modeling the evo-
lution of the underlying or modeling the evolution of the implied volatility
surface. In both cases one requires that the model is free of arbitrage.

Modeling the underlying usually involves the specification of a multi-
factor Markovian model under the risk-neutral pricing measure (see [7], for
instance). The calibration to the observed implied volatilities of the pa-
rameters of that model, including the market prices of risk, is a challenging
task because of the complex relation between call option prices and model
parameters (through a pricing partial differential equation for instance). A
main problem with this approach is to find the “right model” which will
produce a stable parameter estimation. We like to think of this problem as
the “(t,T, K)” problem: for a given present time ¢ and a fixed maturity 7,
it is usually easy with low dimensional models to fit the skew with respect
to strikes K. Getting a good fit of the term structure of implied volatility,
that is when a range of observed maturities are taken into account, is a much
harder problem which can be handled with a sufficient number of parameters
and eventually including jumps in the model (see [7, 4] for instance). The
main problem remains: the stability with respect to ¢ of these calibrated
parameters. However this is an highly desirable quality if one wants to use
the model to compute no-arbitrage prices of more complex path-dependent
derivatives, since in this case the distribution over time of the underlying is
crucial.

Modeling directly the evolution of the implied volatility surface is a
promising approach but involves some complicated issues. One has to make
sure that the model is free of arbitrage or, in other words, that the surface
is produced by some underlying under a risk-neutral measure. This is not
an obvious task (see [6] and references therein). The choice of a model and
its calibration is also an important issue in this approach. But most impor-
tantly, in order to use this modeling to price other path-dependent contracts,
one has to identify a corresponding underlying which typically does not lead
to a low dimensional Markovian evolution.

Wouldn’t it be nice to have a direct and simple connection between the
observed implied volatilities and prices of more complex path-dependent con-
tracts! Our objective is to provide such a bridge. This is done by using a
combination of singular and regular perturbations techniques correspond-
ing respectively to fast and slow time scales in volatility. We obtain a
parametrization of the implied volatility surface in terms of Greeks, which
involves four parameters at the first order of approximation. This procedure



leads to parameters which are exactly those needed to price other contracts
at this level of approximation. In our previous work presented in [9] we used
only the fast volatility time scale combined with a statistical estimation of
an effective constant volatility from historical data. The introduction of the
slow volatility time scale enables us to capture more accurately the behavior
of the term structure of implied volatility at long maturities. Moreover in
the framework presented here, statistics of historical data are not needed.
Thus, in summary, we directly link the implied volatilities to prices of path-
dependent contracts by exploiting volatility time scales. We refer to [11] for
a detailed presentation of volatility time scales in the S&P 500 index. The
mathematical derivation of the combined regular and singular perturbations
can be found in [13].

2 Volatility Time Scales

Stochastic volatility models can be seen as continuous time versions of ARCH-
type models which have been introduced by R. Engle. The importance
of volatility modeling is reflected by the fact that R. Engle has just been
awarded the 2003 Nobel Prize for Economics, shared with C. Granger whose
work also deals with time scale modeling. Our modeling point of view is
that volatility is driven by several stochastic factors running on different
time scales. The presence of these volatility factors is well documented in
the literature using underlying returns data (see for instance [1, 2, 5, 8, 11,
17,18, 21, 22] ). In fact these factors play a central role in derivatives pric-
ing and generate in a complex way the term structure of implied volatility.
Our perturbative approach vastly simplifies this complex relation and leads
to simple formulas which reflect the main features of the implied volatilities
that follow from the effects of these various volatility time scales.

Before going into formulas, we describe in simple words what these time
scales represent and their effects on derivatives pricing.

A stochastic volatility factor running on a slow scale means that it
takes a long time (compared with typical maturities) for this factor to change
appreciably and decorrelate. In the slow scale limit this would then become a
constant volatility factor frozen at the present level. In this limit, derivatives
prices would be obtained by the usual Black-Scholes pricing theory at this
constant volatility level. Our regular perturbation analysis gives corrections
to this limit which affect long dated options and therefore are reflected in the



behavior of the skew at large maturities. Slow scales, or small perturbations,
have been considered in [15, 19, 23].

A stochastic volatility factor running on a fast scale means that it takes
a short time (compared with typical maturities) for this factor to come back
to its mean level and decorrelate. In the fast scale limit this would then also
become a constant volatility factor at an effective level & determined by the
averaged square volatility

P [ o) (1)
el t o“(s)ds,

the slow volatility factor being frozen, and where we assume that the fast
volatility factor is mean-reverting with rapid mixing properties. Our singular
perturbation analysis gives corrections to this Black-Scholes limit which affect
options over various maturities and therefore are reflected in the behavior of
the skew.

The formulas presented below are obtained by considering that volatility
is driven by both slow and fast scale factors. Our analysis, which combines
regular and singular perturbations, leads to a parametrization of the term
structure of implied volatility which is valid over a wide range of maturities.
In that sense, to the leading order, we solve the “(T, K) problem”. In fact it
turns out that the calibration of our parameters is stable in time and there-
fore, to the leading order, we provide a solution to the full (¢,7, K') problem,
and we demonstrate that modeling volatility with at least two factors (a slow
and a fast) is consistent with the behavior of derivative markets.

3 Volatility Skew Formulas

3.1 Vanilla Prices

Our asymptotic analysis performed on European vanilla options leads to an
explicit formula for the approximated price when the underlying model has a
volatility driven by a slow and a fast factor. The leading order term, Pgg(c*),
is the classical Black-Scholes price of the contract evaluated at the constant
volatility ¢* which will be calibrated from the observed implied volatilities
in Section 3.2. The correction is a combination of three terms expressed in
terms of the Greeks of the Black-Scholes price at the volatility level o*:

P~ Pps(0*)+ (T —1) {uoV + 01 SA(V) + vsSA(ST) (2)
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where S denotes the present value at time ¢ of the underlying, 7" denotes the
maturity, and the Greeks are given by

V = 8§UBS (6*)  (Vega)
SA(V) = Sl B5(0*)  (SDelta(Vega))
0S0o
SA(ST) = Sg <5282PBS>(U*) (SDelta(S?Gamma)).
83 552

An extensive discussion of the role of the Greeks can be found in [16].

The small parameters (vg, v, v3) will also be calibrated from the observed
implied volatilities as we will explain in Section 3.2. The terms involving v,
and vy are price corrections that come from the effect of the slow factor. The
term involving v is caused by the fast factor in the volatility and its leverage
effect. We remark that the effective volatility ¢* includes a correction
that comes from the market price of fast volatility risk; this volatility level
correction could alternatively have been incorporated as a price correction
term proportional to S?Gamma (the apparently missing v, term). In that
sense ¢* is a corrected value of the average volatility ¢ introduced in (1).
The main advantage of introducing ¢* is that it can be estimated from the
smile as explained below in Section 3.2. In contrast, & can only be estimated
from long records of historical returns data.

Observe that for European vanilla options we have the explicit relation:

V= (T —t)oS°T,
and therefore the price approximation can be written in the form
P~ Pus(o®) + (T — gV + {(T -ty + (15/0")} SAV).  (3)

It is crucial to observe that we can implement this level of price approxi-
mation knowing only the present value, S, and the four parameters o*, vy, v1
and vs. We next show that these parameters in fact can be estimated from
the implied volatilities.

3.2 Calibrating the smile

The price approximation given above in the case with European call options
leads to the following approximation of the implied volatility skew:
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where as in [9] the Log-Moneyness-to-Maturity Ratio is defined by

log(K/S)

LMMR =
T—t

In fact the coefficients mg and by are due to the fast volatility factor while
the coefficients m; and b; are due to the slow volatility factor which becomes
important for large maturities.

Our method now consists of the following steps:

(I) Given a discrete set of implied volatilities I(t, S; K, Tj), we carry out
the linear least squares fits, m LMMR + b, with respect to LMMR for each
time to maturity 7; = 7} — t. This is illustrated in Figure 1 for six different
maturities and for strikes not far out of the money.
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Figure 1: S&P 500 Implied Volatility data on June 5, 20038 and fits to the affine
LMMR approximation (4) for siz different maturities.

We will see in Section 4 that higher order corrections are needed to capture
the turn of the skew as illustrated in Figure 8.

Next we estimate the parameters (myg, by), respectively (mq,b;), by linear
regression with respect to (7' — t) of m, respectively b.
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In Figure 2 we show the results of these linear regressions on a given day
(June 5, 2003) for the S&P 500 implied volatilities.
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Figure 2: S&P 500 Implied Volatility data on June 5, 20038 and fits to the two-
scales asymptotic theory. The bottom (rep. top) figure shows the linear regression
of b (resp. a) with respect to time to maturity T =T — t.

(IT) The parameters o*, vy, v1 and v that are needed for pricing are given
explicitly by the following formulas:

b2
ot = by+myg (r - §0> (5)
Vo — b1 —+ ma (7" — b—%>
2
v = mlbg
V3 = mobg

Observe that in the regime that our approximation is valid the parameters
Vg, v1 and vz are expected to be small, while ¢* is the leading order magnitude



of volatility. Here, r is the short rate which we assume to be known and
constant.

3.3 Pricing Equations

We explain some of the background for the above results and relate this to
deriving pricing equations for rather general contracts. The price approxi-
mation given by the right hand side of (3) can be written

Pgs(0*) + Pi(07%)
where the correction Pj(c*) is given by:
Pi(0*) = (T —t)veV + {(T — t)vys + (vs/0*) } SA(V).

The leading order term Ppgg(c*) is the classical Black-Scholes price at the
constant volatility level o*. It is the solution of the PDE problem

»CBS(U*)PBS = 0

with the terminal condition Pgg(7,.S) = h(S) where h is the payoff function
for the European vanilla option that we consider. Recall that the Black-
Scholes operator is given by

0 1 0? 0
EBS(U)—8t+ ( )SQﬁ‘F (S%—>

The price correction P;(c*) solves the following partial differential equation

R dPps PPgs o0 (0" Pss .
,CBs(O' )Pl(O' ) = (21)0 a +2 15638 3563 (S 632 (O’ ), (6)

with a zero terminal condition P;(c*)(7,S) = 0. In terms of the Greeks
introduced in (2) this equation reads

Lps(0*)Pi(0*) = — (200V + 201 SA(V) + v3SA(ST) ) (7)

where again the Greeks are evaluated at the effective volatility o*.



3.4 Pricing Exotic Contracts

We are now in a position to carry out our main task, that is, with the
parameters calibrated from the smile we will price more general contracts
than just the vanilla cases considered above. The pricing procedure is simply:

1. Compute the leading order (Black-Scholes) price Py(c*) which is the
price of the contract at the constant volatility level o* defined in
(5). This involves solving partial differential equations with appropriate
boundary and terminal conditions.

2. Compute the Greeks V, SA(V), SA(S?T) of the price Py(c*) of the
exotic contract.

3. Compute the price correction P;(c*) by solving the same pricing prob-
lem as in Step 1 for Py(c*) with the constant volatility o*, but with
a zero payoff and with a source, as in (7), defined in terms of the
computed Greeks and the three parameters vy, v1 and v3 that are cali-
brated from the skew as explained in section 3.2. The source is defined
exactly as in (7), and the partial differential equations depend on the
nature of the contract.

4. The price is now given by correcting the leading order price:

P =~ Py(c*) + Pi(0%).

We present next some remarks regarding the above procedure.

e For complicated contracts, computing the price Py(c*) along with the
Greeks usually requires numerical methods (finite differences, Monte
Carlo,..) depending on the nature of the contract. We do not comment
on the details of these numerical methods. These methods are well
documented elsewhere (see for instance [24]), what is important to note
is that in this framework they only need to be applied in a setting with
a constant volatility.

e Solving the problem for the correction P requires generalizations of
these methods to the case with a source term. The authors have explic-
itly considered some of these problems (Asian, Barriers, American,...)
in [9] with only the fast scale, and in [13] and the forthcoming book



[14] with both fast and slow scales. Note that for American options
the free boundary is determined by solving the problem for Py(c*) and
it is then used as a fixed boundary in the problem with a source that
determines P;(0*).

e A variation of this approach consists of formulating a closed problem
for a slightly modified price P* with the same order of accuracy as for
Py(0*) + Py(c*). The new problem derives from (6) by replacing Pgg
in the source by the unknown function P*:

o op* 2P+ 0 (PP
EBS(O' )P + <2’an—0_ + 2@15@ + Ugsﬁ <S 952 )) =0.

This gives a third order linear partial differential equation for the modi-
fied price with respect the two variables S and 0. We essentially replace
two one-dimensional problems with one two-dimensional problem, but
the advantage of this approach is that by using implicit methods we
can bypass the expensive computation of the Greeks in Step 2.

4 Further Corrections

Observe that above we used a leading order expansion of the price in the
context of a multifactor stochastic volatility to obtain a connection between
the implied volatility skew and pricing formulas. The mathematical tools
underlying the approximation (6) consists in writing first a class of stochastic
volatility models containing fast and slow volatility factors. We then expand
the corresponding pricing equations with respect to the small parameters
defining these two time scales: one parameter being the time scale of the fast
factor and the other being the reciprocal of the time scale of the slow factor.
The formulas above constitute the first order approximation with respect to
these parameters.

A natural extension of this approach is to include further terms of the
asymptotic expansion. In particular, as the first-order terms describe affine
skews (as a function of log-moneyness), but often we observe slight turns
(or wings) at extreme strikes, we consider the next set of terms, which turn
out to allow for skews that are quartic polynomials in log-moneyness. By
including these terms we improve the quality of the fit to the skew and the
accuracy of the pricing formulas. Indeed the number of parameters increases
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(from four to eleven), higher order Greeks are involved (up to sixth order
derivatives) and consequently the computational cost also increases.

The upshot of a long calculation that includes the next three (second-
order) terms in the combined fast and slow scales expansion, is that, outside
of a small terminal layer (very close to expiration), implied volatilities are
approximated by

[~ iaj(f) (LM) + %(I)t, (8)

where 7 denotes the time-to maturity 7' — ¢, LM denotes the moneyness
log(K/S), and ®, is a rapidly changing component that varies with the fast
volatility factor. In (8) we choose to separate the log-moneyness and the ma-
turity dependence. Alternatively we could have written the implied volatility
as a polynomial in LMMR as we did in (4) for the first order approximation.

Again, this calibration formula is employed in a two-stage fitting proce-
dure that recognizes the thinness of data in the maturity dimension, relative
to the many available strikes. On each day, the skew for each available ma-
turity is fit to a quartic polynomial in log-moneyness to obtain estimates
of ay(7), as(7), az(r) and ay(7) for those 7 that are observed on that day.
The ag estimates include the small component ®;, and we discuss only the
ai, - -, ay fits here.

Figure 3 shows some typical quartic fits of S&P 500 implied volatilities
for a few maturities. Here we use a wider range of strikes than in the linear
fit shown in Figure 4, in particular in the out of the money direction. We see
from these plots that the quartic produced by second order approximation
becomes important in capturing the turn of the skew. In these fits, it is
important to fit the main body of the skew to an affine function of log-
moneyness first (corresponding to the first order approximation presented in
Section 3.2), and then fit the remainder

I — (ap+ a1(LM))
(LM)?

to a quadratic in moneyness LM (in practice, LM is shifted to LM + 1
to avoid divide-by-zero issues). This split procedure is necessary because a
free one-stage fit often uses the freedom of the quartic to catch stray data
points, leading to large estimates of a3 and a4. By viewing the wings as small
corrections to the linear skew, we avoid “tail wagging the dog” phenomena.
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5 June, 2003: S&P 500 Options, 15 days to maturity 5 June, 2003: S&P 500 Options, 71 days to maturity
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Figure 3: S&P 500 Implied Volatility data on June 5, 2003 and quartic fits to the
asymptotic theory for four maturities.

Then, we fit the quartic coefficients to the following term-structure for-
mulas coming from the asymptotics:

2
a(r) = Y aprt (9)
k=—1
1
CLQ(T) = Z a27k7'k
k=—2
0
az(t) = 2: a&ka
k=—1

a4(7') = Z a47k7'k.

=—2

The calibrated parameters {a;;} play the role played by (bo, b1, mo, m;) in
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the first-order theory.
Figure 4 shows the fits of the a(7)’s to their term-structure formulas for
S&P 500 data on June 5, 2003.
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Figure 4: S€P 500 Term-Structure Fit using second order approximation. Data
from June 5, 2003.

As discussed in the introduction, one of the main issues in volatility cal-
ibration is the stability with respect to ¢t of the parameter estimates. To
illustrate this point we carried out the quartic fits on S&P 500 implied
volatilities collected over the course of a month, We obtain estimates of
a1(T), as(7), az(7) and a4(7) for those T that are observed over this period.
Figure 5 shows the fits of ay,---, a4 to their corresponding term-structure
formulas given in (9). The reasonable fits using a month’s data demonstrate
the stability of the approximation over some time. We remark that the a;
estimates become less structured at small maturities because of a periodic
maturity cycle component due to the option expiration (‘witching’) dates the
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Figure 5: S&P 500 Term-Structure Fit. Data from every trading day in May
2003.

third Friday of each month. This is studied in detail in [10].

The final step is to recover the parameters needed for pricing from the
estimates of {a;}, the analog of (5) in the first-order theory. However, these
relations are no longer linear in the second-order theory, and a nonlinear
inversion algorithm is required. This aspect has to be treated case by case in
order to take advantage of the particular features of the market under study.
For instance in FX markets, the correlation between the underlying and its
volatility tend to be zero which reduces the complexity of the implementation
of the second order theory.
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